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Abstract. After commenting on the state of contemporary hadronic physics and spectroscopy,
I highlight four areas where the action is: searching for the relevant degrees of freedom, mesons
with beauty and charm, chiral symmetry and the DsJ levels, and X(3872) and the lost tribes
of charmonium.

1. Introduction

1.1. Three Cheers for QCD!

It has been a good season for Quantum Chromodynamics. Just a few days ago, the Royal
Swedish Academy of Sciences awarded the 2004 Nobel Prize in Physics to David Gross, David
Politzer, and Frank Wilczek, “for the discovery of asymptotic freedom in the theory of the
strong interaction.” I hope that all of you have not only taken pleasure in the recognition
accorded to our friends and their work [1, 2], but also have taken some time to reflect on the
developments that preceded and followed from the discovery of asymptotic freedom,1 and to
share your understanding of the remarkable edifice that is QCD with your colleagues at home.

The discovery of asymptotic freedom and the understanding of what it could mean marked
a tipping point in the long struggle to make sense of the strong interactions, but it could only
have appeared in a rich context. If by chance you have never read the seminal papers, or if it
has been a long time since you enjoyed them, let me point you to a short selection of the classics.
The idea of a vector gluon theory may be found in a prescient paper by Nambu [3], and the case
for a color gauge theory is made by Gell-Mann and collaborators [4, 5, 6]. Perceiving the broad
reach of the antiscreening property of non-Abelian gauge theories required an understanding
of the Callan [7] – Symanzik [8] renormalization group equations, which many physicists of
a certain age acquired from Sidney Coleman’s Erice lecture notes [9]. And, of course, the
tension that asymptotic freedom relieved was created by the successes of the quark model, the
unavailing searches for free quarks, the experimental observation [10] of Bjorken scaling [11],
and the intuitive appeal of the parton model [12, 13]. Now is the perfect time to refresh your
appreciation of this wonderful saga, and to look ahead to what else we might make.

1.2. Spectroscopy Is Alive and Well

The occasion to celebrate past glories isn’t the only reason to see this as a good season for QCD.
The talks we have just heard by Gabriella Sciolla [14] and Steve Olsen [15] are emblematic of

1 A good starting place is the informal history to be found at http://nobelprize.org/physics/laureates/2004/phyadv04.pdf .

http://nobelprize.org/physics/laureates/2004/phyadv04.pdf
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a most remarkable renaissance in hadron spectroscopy now in full bloom. Over the past few
years, experiments have uncovered a plethora of new narrow states that extend our knowledge
of hadrons and challenge our understanding of the strong interaction.

In the heavy-flavor arena that I shall emphasize, first came the discovery in the Belle
experiment of η′c in exclusive B → KKSK

−π+ decays [16]. CLEO [17], BaBar [18], and Belle [19]
have confirmed and refined the discovery of η′c in γγ collisions, fixing its mass and width as
M(η′c) = 3637.7± 4.4 MeV and Γ(η′c) = 19± 10 MeV [20]. The unexpectedly narrow DsJ states
discovered by Babar [21], CLEO [22], and Belle [23] provided the next surprise. Then followed
the discovery by Belle [24] of X(3872) → π+π−J/ψ, rapidly confirmed by CDF [25], DØ [26], and
BaBar [27]. This year, it appears that we may finally have solid evidence for hc, the 11P1 level of
charmonium, from E835 [28] and CLEO [29, 30]. We have just heard [15] that Belle has sighted
one or more interesting peaks in the neighborhood of 3940 MeV. On the baryon side, SELEX
has reported signals for a family of doubly charmed baryons, beginning with Ξ+

cc(3519) [31]. And
the broad jq = 1

2 charm levels are coming under increasing experimental scrutiny [32, 33, 34, 35].

In the light-quark sector, evidence has been accumulating for exotic JPC = 1−+ mesons [36,
37] that do not correspond to qq̄ states. Conflicting evidence on pentaquarks, baryon states
with quantum numbers that do not occur in the simple qqq quark-model description of baryons,
continues to provoke lively discussion [38, 39, 40, 41].

Each of the new states raises questions of interpretation, and offers opportunities to
challenge—and deepen—our understanding. The conversation between theory and experiment,
and among different experiments, has been lively and stimulating.

1.3. The Value of Hadronic Physics

It is good to engage in lively conversations; it is even better to reach significant conclusions about
the way Nature works. And there the exploratory—and, not infrequently, wooly—character of
hadronic physics means that the path to fundamental lessons may be indistinct. The hadronic
physics community needs to think about how it spends its time—and why.

In her opening lecture at Heavy Quarks and Leptons 2004, Helen Quinn [42] made the
following observations to explain her emphasis on the weak interactions:

Hadron phenomenology and spectroscopy does not test the standard model. We have a
qualitative understanding of QCD phenomenology, but many aspects are not calculable
from first principles. We make models for new states: approximations such as potential
models, or intuitive pictures of substructure. The competing pictures are not mutually
exclusive; quantum superpositions are possible. We’ll never throw out QCD if these
pictures turn out not to work for the next state we find. We do learn how to refine our
approximations to QCD.

These are fair and thoughtful observations. How do you respond?
I would note that there is value to both fundamental and applied science, and that the

apparently less glamourous work of applied science may be just what we need to get at the
fundamental lessons. Moreover, exploration—the task of discovering what phenomena exist and
of developing systematics—helps us to understand what the fundamental questions are, and how
we might best address them.

At the same time, a little self-awareness (even self-criticism) can make for better science. We
need to distinguish between exploratory models and controlled approximations, to pay attention
to whether we are testing theories or theorists (both activities have some social value), and to
ask whether we are probing close to the Lagrangian of Quantum Chromodynamics or comparing
random numbers with experiment.

Physics doesn’t advance by perturbation theory alone, and it is worth recalling that one of
QCD’s signal achievements is explaining what sets the mass of the proton—or, if you like, what
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accounts for nearly all the visible mass of the Universe. The insight that the mass of the proton
arises from the energy stored up in confining three quarks in a small volume, not from the masses
of the constituents themselves, is a landmark in our understanding of Nature [43]. The value
of that insight isn’t diminished because it is a little bit qualitative, or because a quantitative
execution of the idea requires the heavy machinery of lattice field theory.

More generally, there is great value in a convincing physical picture that can show us the way
to an answer (whether or not precise and controlled), or show that some tempting simplifying
assumptions are unwarranted. The chiral quark model [44], which identifies the significant
degrees of freedom on the 1-GeV scale as constituent quarks and Goldstone bosons, offers a nice
example. It points to the u-d asymmetry in the light-quark sea of the proton [45], and predicts
a negative polarization of the strange (but not antistrange) sea. A lifetime of staring at LQCD

wouldn’t lead to these expectations.
We can value anschaulich explanations as sources of intuition and instruments of exploration,

while keeping clearly in mind their limitations, as we try to address many open-ended questions,
including: What is a hadron? What are the apt degrees of freedom? What symmetries are
fruitful? What are the implications of QCD under extreme conditions?

1.4. The Theory of Everything

There is another reason to contemplate the style of analysis that characterizes hadronic physics
and its relationship to fundamental insights. In a provocative article, Laughlin & Pines [46]
trumpet the end of reductionism (“the science of the past,” which they identify with particle
physics) and the triumph of emergent behavior, the study of complex adaptive systems (“the
physics of the next century”). By emergent, we understand phenomena that are not simply
derived from the underlying microphysics—a Lagrangian, say—but are governed by “higher
organizing principles” (perhaps universal), relatively independent of the fundamental theory. If
these clever fellows were better listeners, I believe they would come to understand that even the
top-down string theorists they view as arch-reductionists are, in truth, paragons of the emergent
impulse. What could be more emergent than the conviction that our standard model will arise
out of the multiple vacua of M theory and the string-theory landscape?

Emergence is, moreover, quite ubiquitous in particle physics, and especially in the hadronic
physics we are discussing at this meeting. For example, as QCD becomes strongly coupled at
low energies, new phenomena emerge that are not immediately obvious from the Lagrangian.
Confinement and chiral symmetry breaking, with the implied appearance of Goldstone bosons,
are specific illustrations. A graceful description entails new degrees of freedom that may be
expressed in a model or—in the best of cases—in a new effective field theory.

The other hallmark of the kind of science that Pines and Laughlin advocate is the synthesis
of principles through experiment. This too is central to the way hadronic physics is constructed,
and runs through the agenda of this workshop. So I think that these earnest scholars are
promoting a combat that need not exist. For my part, I can’t imagine creating physics without
both reduction and synthesis, and I think it would be foolish to follow only one approach.2

I hope you will take time, during this meeting and beyond, to reflect on the roles of microscopic
parameters and emergent phenomena in hadronic physics and in your own work. The topics on
the agenda lend themselves to building a bridge between the spareness of the Lagrangian and
the richness of emergent behavior; they can benefit from a range of approaches, and they should
stimulate rewarding conversations among physicists with different sensibilities.

2 It might be interesting to muse on whether seeing a given set of phenomena as emergent represents a transient
stage in our evolving understanding or a final state. Such considerations call for a highly cerebral bottle of wine.
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1.5. Making Connections; Controlling Approximations

The essence of doing science consists in making connections that lead us beyond independent
explanations for distinct phenoma toward a coherent understanding of many phenomena.
A network of understanding helps us see how different observations fit together and—very
important—helps us know enough to recognize that something doesn’t fit.

Connections among experiments or observations are not the only important ones. Whenever it
is possible, we need to make connections between our models and the QCD Lagrangian—either
directly, or through effective field theories, lattice field theory, or a controlled approximation
to full QCD. I would also stress the potential value of reaching toward connections with our
knowledge of nuclear forces and with the phenomena that occur in nuclear matter under unusal
conditions.

My colleague Estia Eichten [47] likes to emphasize the different circumstances under which
various approximations to QCD can be regarded as controlled expansions in small parameters.
Nonrelativistic QCD applies to heavy-heavy (Q1Q̄2) mesons, for which the quark masses greatly
exceed the QCD scale parameter, mQi

≫ ΛQCD. Befitting its aptness for the nonrelativistic limit,
NRQCD takes as its expansion parameter v/c, the heavy-quark velocity divided by the speed
of light. Heavy-quark effective theory (HQET) applies usefully to heavy-light (Qq̄) systems, for
which mQ ≫ ΛQCD. In first approximation, the spin of the heavy quark is regarded as static, so

the “light-quark spin” ~q = ~L+~sq is a good quantum number. The relevant expansion parameter
is ΛQCD/mQ. Chiral symmetry is a valuable starting point for light quark systems (q1q̄2) with
mqi

≪ ΛQCD. In this case, the expansion parameter compares the current-quark mass to the
scale of chiral-symmetry breaking, and is generally taken as mq/4πfπ, where fπ is the pion decay
constant.

2. Searching for the Relevant Degrees of Freedom

Much of our insight into the comportment of hadrons follows from the simplifying assumption
that mesons are quark–antiquark states, baryons are three-quark states, and that the quarks
have only essential correlations. In the case of baryons, this reasoning leads us to the plausible
starting point of SU(6) (flavor-spin) wave functions, which indeed offer a useful framework for
discussing magnetic moments and other static properties. Some observations, however, show us
the limitations of the zeroth-order guess. If we examine deeply inelastic scattering in the limit
as x→ 1, spin asymmetries indicate that the SU(6) wave functions are inadequate [48], and the
ratio3 Fn

2 /F
p
2 is far from the uncorrelated expectation of 2

3 .
Under what circumstances might it be fruitful—or even essential—to consider diquarks as

physical objects [50]? The algebra of SU(3)c tells us that the 3 ⊗ 3 quark–quark combination
is attractive in the 3∗ representation that corresponds to an antisymmetric diquark structure.
A simple analysis suggests that the attraction of [qq]3∗ is half as strong as that of the [qq̄]1
(3 ⊗ 3∗ → 1) channel. For many years, it has seemed to make sense to regard members of the
scalar nonet {f0(600) = σ, κ(900), f0(980), a0(980)} as qqq̄q̄ states organized as [[qq]3∗ [q̄q̄]3]1 [51].
Recently, intrinsic diquarks (|uuudcc̄〉) and intrinsic double-charm Fock states (|uudcc̄cc̄〉) have
been advanced as an explanation of the production of the SELEX Ξ(ccd) and Ξ(ccu) states [52].
Diquarks as objects have elicited new attention under the stimulus of experimental evidence
for pentaquark states [53, 54, 55]. (The attention to pentaquarks should be seen as part of
a broader investigation into the existence of configurations beyond qqq and qq̄.) That work,
in turn, has led Wilczek and collaborators to revisit the Chew–Frautschi systematics of N,∆
resonances [56], and to assert that it is useful to view even low-spin, light baryons as q[qq]3∗

configurations. What can lattice QCD tell us about the shape of qqq baryons—both at the
lowest spins and at high angular momenta [57]? Can the quark–diquark picture be reconciled

3 For a clear exposition of issues related to the neutron-proton ratio, see Ref. [49].
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with intuition from the 1/Nc expansion [58, 59]?
It is worth testing and extending the q[qq]3∗ proposal by considering its implications for

doubly heavy (QQq) baryons. The comparison with heavy-light (Qq̄) mesons offers a chance to
calibrate the attractive forces in the 3∗ and color-singlet channels. Similarly, extending studies
of the systematics of qq · q̄q̄ states to Qq · Q̄q̄ states should, over the long term, develop and
challenge the way we think about diquarks. Finally, in heavy-ion collisions, we should be alert
for tests of the utility of diquarks in color–flavor locking, color superconductivity, and other
novel phenomena. Tugging the diquark concept this way and that will help elucidate the value
of colorspin [60] as an organizing principle for hadron spectroscopy.

3. Mesons with Beauty and Charm

There is potentially great value to be gained by stretching our models and calculations beyond
the domains in which we first encountered them. By leaving the comfort zone, we may happen
on effects that were unimportant—or concealed—in the original setting. An excellent example
is the prospect of extending our descriptions of the ψ (cc̄) and Υ (bb̄) systems to the spectrum
of Bc (bc̄) mesons [61]. Establishing the Bc ground state in nonleptonic decays—πJ/ψ, a1J/ψ are
the most promising final states—to pin down the mass with greater certainty than is possible
in the semileptonic J/ψℓν channel and beginning to reconstruct some part of the spectrum in γ
or π+π− cascades to the ground state will be an experimental tour-de-force.

Several factors contribute to the theoretical interest in Bc. The bc̄ system interpolates between
heavy-heavy (QQ̄) and heavy-light (Qq̄) systems. The unequal-mass kinematics and the fact
that the charmed quark is more relativistic in a bc̄ bound state than in the corresponding cc̄
level imply an enhanced sensitivity to effects beyond nonrelativistic quantum mechanics.

The new element in bc̄ theory is lattice QCD calculations that include dynamical quarks. At
this meeting, Andreas Kronfeld reports new predictions [62, 63] for the mass of the bc̄ ground
state on behalf of a Glasgow–Fermilab subset of the High-Precision QCD Collaboration.4 Using
quarkonium as a baseline, they quote a preliminary value, MBc

= 6304 ± 3 ± 3 ± 11+0
−12 MeV;

using a heavy-light baseline, they find MBc
= 6253 ± 17± 3± 11+30−50

−0 MeV. They are making
final studies of the sensitivity to lattice spacing and the sea-quark mass, and expect to present
a final result soon.

4. Chiral Symmetry and the DsJ Levels

In early 2003, the Babar [21], CLEO [22], and Belle [23] experiments presented convincing
evidence for two new narrow charmed-strange mesons, Ds(2317) → Dsπ

0 andDs(2459) → D∗

sπ
0.

These states, which are candidates for the jq = 1
2 cs̄ levels with JPC = 0++ and 1++, are curious

on several counts. Their centroid is well below that of the corresponding jq = 3
2 states Ds1(2535)

and D∗

s2(2572), in disagreement with relativistic quark model predictions [66].5 And although
we anticipated that the jq = 1

2 Ds and Bs states might be narrower than their nonstrange
counterparts, because of the limited phase space for kaon emission [68], these states are seen
in isospin-violating decays; the standard decay channels are kinematically forbidden. The
unexpected properties of these states have provoked much discussion [69, 70, 71, 72], including
speculations that they might be multiquark or molecular states.

Before looking into interpretations of the narrow charmed-strange states, let us take a moment
to review some elementary points about meson taxonomy. Two useful classification schemes are
familiar in atomic spectroscopy as the LS and jj coupling schemes. Any state can be described
in any scheme, through appropriate configuration mixing, but it is prudent to keep in mind that
a choice of basis can guide—or maybe misguide—our thinking.

4 See also the talks by Alan Gray on bottomonium [64] and by Jim Simone on charmonium [65].
5 See Alexey Drutskoy’s talk [67] for an update on Belle’s observations.
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For equal-mass meson systems (qq̄ or QQ̄) it is traditional to couple the orbital angular

momentum, ~L, with the total spin of the quark and antiquark, ~S = ~sq +~sq̄. This is the standard
practice for light mesons, and is now familiar for the designation of quarkonium (cc̄ and bb̄)

levels. The good quantum numbers are then S, L, and J , with ~J = ~L+ ~S, and we denote the
spin-singlet and spin-triplet levels as 1S0 – 3S1;

1P1 – 3P0,1,2;
1D2 – 3D1,2,3; and, in general, as

1LL – 3LL−1,L,L+1.
In the case of heavy-light (Qq̄) mesons, it is suggestive to couple the difficult-to-flip heavy-

quark spin, ~sQ, with the “light spin,” ~jq = ~L+ ~sq. The good quantum numbers are then L, jq,

and J , where ~J = ~sQ +~jq, and the low-lying levels are

L = 0 : jq = 1
2 : 0− - 1−

L = 1 : jq =

{

1
2 :
3
2 :

0+ - 1+

1+ - 2+

etc.

In the absence of configuration mixing, this classification implies that the jq = 3
2 states will

decay only through the d-wave, and so will be narrow. The jq = 1
2 states, for which s-wave

decay is allowed, will in general be broad.
It makes sense to seek out intermediate cases wherever we can find them. We expect, for

example, mixed 1+ levels in the Bc = bc̄ spectrum, but that information is not likely to be in
our hands soon. A more accessible case might be that of the strange particles (sq̄), for which the
qq̄-inspired LS classification has been the standard. Perhaps some unexpected insights might
come from considering strange mesons as heavy-light (Qq̄) states [73]. In any event, it is worth
asking how infallible is the intuition we derive from regarding Ds states as heavy-light.

I think the evidence is persuasive that the DsJ levels are ordinary cs̄ states at lower masses
than anticipated, and I find it intriguing that these states might give us a window on chiral
symmetry in a novel setting [74]. Let us suppose that, contrary to standard intuition in light-
quark systems, chiral symmetry and confinement might coexist in heavy–light mesons. Then we
would expect to observe chiral supermultiplets: states with orbital angular momenta L,L + 1,
but the same value of jq. Specifically, we should find the paired doublets

jq = 1
2 : 1S(0−, 1−) and 1P(0+, 1+);

jq = 3
2 : 1P(1+, 2+) and 1D(1−, 2−).

Chiral symmetry predicts equal hyperfine splitting in the paired doublets, MDs(1+) −MDs(0+) =
MDs(1−) −MDs(0−), in agreement with what is observed, and so far, the predictions for decay

rates match experiment.6 In addition to confronting chiral symmetry’s predictions for the Ds

and other families, we need to ask to what extent the coexistence of chiral symmetry and
confinement is realized in QCD.

For any interpretation of the DsJ states, it is imperative to predict what happens in the Bs

system. Experimenters need not wait for the theorists to place their bets. Tracking down the
BsJ analogues should be a high priority for CDF and DØ!

5. The Lost Tribes of Charmonium

One of the liveliest areas of heavy-flavor spectroscopy has been the renewed exploration of
charmonium and the discovery of several new states [75]. Two sets of states have been missing
for a long time from our experimental inventory: cc̄ states below DD̄ threshold, and unnatural-
parity cc̄ states that lie between DD̄ and DD̄∗ thresholds [76]. In the first category, we count

6 For more details, see Estia Eichten’s talk [72].



FERMILAB–Conf–04/317–T 7

the 11P1 hc, a JPC = 1+− expected to lie close to the 3PJ centroid at 3525.3 MeV, and the
21S0 η

′

c, the JPC = 0−+ hyperfine partner of ψ′(3686). The η′c is now firmly established, and
good evidence for the hc is mounting [28, 29, 30]. The second category includes the ηc2, the
11D2 J

PC = 2−+ level, and its hyperfine partner, the JPC = 2−− 13D2 state, ψ2. The discovery
of X(3872) is the first evidence for a narrow state in the interthreshold region. We do not yet
know whether it is, in fact, a charmonium state.

The motivation for a continuing examination of the charmonium spectrum—even before
the additional surprises we have heard from Steve Olsen [15]—is that there are many states
to study, we know there is more to QCD than potential models embody, and we hope to
find experimental evidence for that additional richness. New experimental tools offer another
stimulus: the opportunity to access JPC quantum numbers that were, until recently, difficult
to reach. The discovery of X(3872) has prompted the realization that there may be additional
narrow cc̄ states with allowed, but inhibited, decays to open charm, and that these might
constitute the beginning of a new facet of charmonium spectroscopy [77, 78, 79]. The most
promising cases are 13D3, 23P2, and 13F4.

At first sight, it seems natural to think of X(3872) as the missing 3D2 level of charmonium,
but some pieces of evidence do not fit gracefully with that hypothesis. The mass is higher
than the 3815 MeV expected in a single-channel potential model, and the radiative decays
X(3872) → γχc1,2—expected to be prominent, or even dominant—have not been detected.
Other charmonium states have been explored [80, 77, 78], but the 3D3 level that seems to
me most promising still requires the discovery of a strong radiative transition to χc2. It is
important to remark that our expectations for radiative branching fractions depend on knowing
the decay rate for X(3872) → π+π−J/ψ. The theory of hadronic cascades is primitive, and
the normalizing rate, Γ(ψ(3770) → π+π−J/ψ) is poorly known. The absence of signals for
γγ → X [81, 82] argues against some off-beat charmonium interpretations. Evidence for a large
(≈ 84%) prompt X signal at the Tevatron [83, 84] and the similarity of X(3872) production
characteristics to those of ψ′ in 2-TeV proton–antiproton collisions [26] are in accord with the
charmonium hypothesis.

The coincidence of X(3872) with the D0D̄∗0 threshold at 3871.5 MeV also invites alternative
interpretations, including an s-wave DD̄∗ threshold cusp in the 1++ channel [85, 86], and
deuteron-like “molecules” formed by pion exchange between D0 and D̄∗0 [87, 88, 89, 90, 91].
In the favored 1++ channel, the hadronic cascade must be X(3872) → (π+π−)I=1J/ψ. If the
observed dipion cascade is the tail of ρ0, and if Belle’s π+π−π0J/ψ [15] represents the tail of
ωJ/ψ, those features would fit nicely with the molecular interpretation. Characterizing the
dipion through a study of angular distributions [92] is an urgent matter for experiment.

Hybrid (cc̄g) states might exist, and these have been put forward as candidates for
X(3872) [93, 94, 95]. However, lattice calculations predict that the lightest charmonium hybrids
should lie in the neighborhood of 4.3 GeV(JPC = 1−+), 4.7 GeV(0+−), and 4.9 GeV(2+−) [96],
and BaBar has seen no evidence for an enhanced X → ηJ/ψ decay rate [97].

None of these interpretations implies a charged partner for X(3872), and none has been
seen [98].

While we have much work to do to pin down the nature of X(3872),7 I want to emphasize
that there are more states to be found. Belle has given us a hint of a narrow state at 3940 MeV
decaying into DD̄∗ [15, 99]. Perhaps it is the 23P2 charmonium level, perhaps the coincidence
with the DsD̄s threshold at 3936.2 MeV is more than coincidence? And then there is Belle’s
broader (?) ωJ/ψ bump near the same mass. If you stare long enough at the π+π−J/ψ discovery
spectra for X(3872), you may see another, less prominent, peak about 40 MeV below. Is it
there? What limits can we set on other π+π−J/ψ states?

7 Long lists of experimental and theoretical tasks can be found in my BEACH04 lecture [75].
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The discovery of the narrow state X(3872) → π+π−J/ψ gives charmonium physics a rich and
lively puzzle. We do not yet know what this state is. If the most conventional interpretation
as a charmonium state—most plausibly, the 13D2 or 13D3 level—is confirmed, we will learn
important lessons about the influence of open-charm states on cc̄ levels. Should the charmonium
interpretation not prevail, perhaps X(3872) will herald an entirely new spectroscopy. In either
event, several new charmonium states remain to be discovered through their radiative decays
or hadronic transitions to lower cc̄ levels. Another set of cc̄ states promises to be observable
as narrow structures that decay into pairs of charmed mesons. In time, comparing what we
learn from this new exploration of the charmonium spectrum with analogous states in the bb̄
and bc̄ families will be rewarding. For all three quarkonium families, we need to improve our
understanding of hadronic cascades. Beyond spectroscopy, we look forward to new insights about
the production of quarkonium states in B decays and hard scattering. The rapid back-and-forth
between theory and experiment is great fun, and I look forward to learning many new lessons!

6. Concluding Observations

Hadron spectroscopy is rich in opportunities. Models—disciplined by principles—are wonderful
exploratory tools that can help us to uncover regularities and surprises. It is important that
phenomenological studies make contact at every opportunity with symmetries and with lattice
QCD, especially as the incorporation of dynamical quarks becomes routine. Our goal—it
is the goal of all science—must be to build coherent networks of understanding, not one-off
interpretations of data. In both experiment and theory, in both exploration and explanation, we
profit by tuning between systems with similar but not identical characteristics, and by driving
models beyond their comfort zones.

I see much to be gained from a comparison of the hadronic body plans we know: quark–
antiquark mesons and three-quark baryons, with the diversity that springs from light and
heavy quarks. Light-quark mesons, heavy-light mesons, and heavy quarkonia call upon different
elements of our theoretical armamentarium, as do baryons containing 3, 2, 1, or 0 light quarks—
but all are hadrons, and some of what we learn in one setting should serve us in another. Do
other body plans occur in Nature—two-quark–two-antiquark mesons, four-quark–one-antiquark
baryons, and more? And what lessons might we draw from the behavior of hadronic matter
under unusual conditions, including those that prevail in heavy-ion collisions?

In addition to the specific measurements I have mentioned and that others have highlighted
in the course of this meeting, I would like to underscore the value of broad searches for
new mesons and baryons. BaBar’s discovery of DsJ and Belle’s string of observations
remind us that you don’t have to know precisely what you are looking for to find something
interesting: combining a convenient trigger particle with an identifiable hadron or two—
(J/ψ or Υ) + π, ππ,K,KS , p,Λ, γ, η, ω, . . .—can be very profitable indeed.

In closing, I’d like to return to Helen Quinn’s friendly challenge and urge you to take those
observations to heart in the way you carry out your research and in the way you present it to
others. In experiment and theory alike, let us use our models and our truncated versions of QCD
to guide our explorations and organize our understanding. Let us keep in mind the limitations
of our tools as we focus on what we can learn of lasting value. Let us, above all, try to discern
where the real secrets are hidden.

Acknowledgments

It is a pleasure to thank Estia Eichten and Ken Lane for a delightful and rewarding collaboration,
and to recognize Steve Olsen for ongoing encouragement and experimental stimulation. I am
grateful to Suh Urk Chung, Andreas Kronfeld, and Wally Melnitchouk for helpful remarks. I
congratulate the organizers of this first meeting of the APS Topical Group on Hadronic Physics—
Ted Barnes, Steve Godfrey, Alexei Petrov, and Eric Swanson—for a rich and provocative



FERMILAB–Conf–04/317–T 9

program of talks. Fermilab is operated by Universities Research Association Inc. under Contract
No. DE-AC02-76CH03000 with the U.S. Department of Energy.

References
[1] Gross D J and Wilczek F Phys. Rev. Lett. 30 1343 (1973).
[2] Politzer H D Phys. Rev. Lett. 30 1346 (1973).
[3] Nambu Y in Preludes in Theoretical Physics in Honor of V. F. Weisskopf, edited by A De-Shalit, H Feshbach,

and L van Hove (North-Holland, Amsterdam, 1966) p. 133.
[4] Gell-Mann M Acta Phys. Austriaca Suppl. IV 733 (1972).
[5] Bardeen W A, Fritzsch H, and Gell-Mann M “Light-cone current algebra, π0 decay, and e+e− annihilation”

in Scale and Conformal Invariance in Hadron Physics, edited by R Gatto (Wiley, New York, 1973) p. 139
[hep-ph/0211388].

[6] Fritzsch H, Gell-Mann M, and Leutwyler H Phys. Lett. B47 365 (1973).
[7] Callan C G Phys. Rev. D2 1541 (1970).
[8] Symanzik K Commun. Math. Phys. 18 227 (1970).
[9] Coleman S “Dilatations,” in Aspects of Symmetry: Selected Erice Lectures (Cambridge University Press,

Cambridge, 1988).
[10] Friedman J I and Kendall H W Ann. Rev. Nucl. Part. Sci. 22 203 (1972).
[11] Bjorken J D Phys. Rev. 179 1547 (1969).
[12] Bjorken J D and Paschos E A Phys. Rev. 185 1975 (1969).
[13] Feynman R P Photon–Hadron Interactions (Benjamin, Reading, Mass., 1972).
[14] Sciolla G “New Results from BaBar,” talk at GHP 2004, These Proceedings.
[15] Olsen S “New Results from Belle,” talk at GHP 2004, These Proceedings.
[16] Choi S K et al Phys. Rev. Lett. 89 102001 (2002) Erratum: ibid. 89, 129901 (2002) [hep-ex/0206002].
[17] Asner D M et al Phys. Rev. Lett. 92 142001 (2004) [hep-ex/0312058].
[18] Wagner G “Recent results on two-photon and τ physics at BaBar” hep-ex/0305083.
[19] Abe K et al “Comment on e+e− annihilation into J/ψ + J/ψ” hep-ex/0306015.
[20] Skwarnicki T Int. J. Mod. Phys. A19 1030 (2004) [hep-ph/0311243].
[21] Aubert B et al Phys. Rev. Lett. 90 242001 (2003) [hep-ex/0304021].
[22] Besson D et al Phys. Rev. D68 032002 (2003) [hep-ex/0305100].
[23] Abe K et al Phys. Rev. Lett. 92 012002 (2004) [hep-ex/0307052].
[24] Choi S K et al Phys. Rev. Lett. 91 262001 (2003) [hep-ex/0309032].
[25] Acosta D et al Phys. Rev. Lett. 93 072001 (2004) [hep-ex/0312021].
[26] Abazov V M et al “Observation and properties of the X(3872) decaying to J/ψπ+π− in pp̄ collisions at

√
s = 1.96 TeV” hep-ex/0405004.

[27] Aubert B et al “Study of the B → J/ψK−π+π− decay and measurement of the B → X(3872)K− branching
fraction” hep-ex/0406022.

[28] Patrignani C “E835 at FNAL: Charmonium Spectroscopy in p̄p Annihilations” hep-ex/0410085.
[29] Seth K “New Results from CLEOc and BES,” talk at GHP 2004, These Proceedings.
[30] Tomaradze A “Evidence for hc Production from ψ′ at CLEO,” talk at GHP 2004, These Proceedings [hep-

ex/0410090].
[31] Mattson M et al Phys. Rev. Lett. 89 112001 (2002) [hep-ex/0208014].
[32] Anderson S et al Nucl. Phys. A663 647–650 (2000) [hep-ex/9908009].
[33] Link J M et al Phys. Lett. B586 11 (2004) [hep-ex/0312060].
[34] Abe K et al Phys. Rev. D69 112002 (2004) [hep-ex/0307021].
[35] Kutschke R K “Charmed Meson Spectroscopy” hep-ex/0411003.
[36] Adams G S et al Phys. Rev. Lett. 81 5760 (1998).
[37] Adams G “Status of Exotic Mesons at E852,” talk at GHP 2004, These Proceedings.
[38] Hicks K “Pentaquark Experiments I,” talk at GHP 2004, These Proceedings.
[39] Dzierba A “Pentaquark Experiments II,” talk at GHP 2004, These Proceedings.
[40] Litvintsev D “Search for Pentaquarks at CDF,” talk at GHP 2004, These Proceedings.
[41] Qiang Y “Search for Pentaquark partners in Jefferson Lab Hall A,” talk at GHP 2004, These Proceedings.
[42] Quinn H R “Opening Talk for Heavy Quark and Leptons 2004” SLAC-PUB-10533; slides available at

http://charma.uprm.edu/hql04/particip.bymail/quinn@slac.stanford.edu/TAL-helen_quinn.pdf .
[43] Wilczek F Phys. Today 52 (11) 11 (November 1999).
[44] Manohar A and Georgi H Nucl. Phys. B234 189 (1984).
[45] Eichten E J, Hinchliffe I, and Quigg C Phys. Rev. D45 2269 (1992).
[46] Laughlin R B and Pines D PNAS 97 28 (2000) [http://www.pnas.org/cgi/reprint/97/1/28.pdf].

http://charma.uprm.edu/hql04/particip.bymail/quinn@slac.stanford.edu/TAL-helen_quinn.pdf
http://www.pnas.org/cgi/reprint/97/1/28.pdf


10 FERMILAB–Conf–04/317–T

[47] Eichten E J “New Developments in Heavy-Light Systems,” QWG3, Beijing,
http://www.qwg.to.infn.it/WS-oct04/WS3talks/Oct14-2/Eichten_Ds.pdf .

[48] Hughes V W and Kuti J Ann. Rev. Nucl. Part. Sci. 33 611 (1983).
[49] Melnitchouk W and Thomas A W Phys. Lett. B377 11 (1996) [nucl-th/9602038].
[50] Anselmino M, Predazzi E, Ekelin S, Fredriksson S, and Lichtenberg D B Rev. Mod. Phys. 65 1199 (1993).
[51] Jaffe R L Phys. Rev. D15 267 (1977).
[52] Brodsky S J “Novel QCD Aspects of Hard Diffraction, Antishadowing, and Single-Spin Asymmetries” hep-

ph/0411028.
[53] Jaffe R L and Wilczek F Phys. Rev. Lett. 91 232003 (2003) [hep-ph/0307341].
[54] Shuryak E “Schematic models for pentaquarks based on diquarks,” talk at GHP 2004, These Proceedings.
[55] Manohar A “Pentaquark Theory,” talk at GHP 2004, These Proceedings.
[56] Wilczek F “Diquarks as inspiration and as objects” hep-ph/0409168.
[57] Cristoforetti M, Faccioli P, Ripka G, and Traini M “Are there diquarks in the nucleon?” hep-ph/0410304.
[58] ’t Hooft G Nucl. Phys. B72 461 (1974).
[59] Dashen R F, Jenkins E, and Manohar A V Phys. Rev. D49 4713 (1994) [hep-ph/9310379].
[60] Jaffe R L Phys. Rev. D15 281 (1977).
[61] Eichten E J and Quigg C Phys. Rev. D49 5845 (1994) [hep-ph/9402210].
[62] Kronfeld A “The Mass of the Bc Meson,” talk at GHP 2004, These Proceedings.
[63] Allison I F et al “A precise determination of the Bc mass from dynamical lattice QCD” hep-lat/0409090.
[64] Gray A “Bottomonium in 3-Flavor Lattice QCD,” talk at GHP 2004, These Proceedings.
[65] Simone J “Charmonium in 3-Flavor Lattice QCD,” talk at GHP 2004, These Proceedings.
[66] Di Pierro M and Eichten E Phys. Rev. D64 114004 (2001) [hep-ph/0104208].
[67] Drutskoy A “Properties of the DsJ States,” talk at GHP 2004, These Proceedings.
[68] Eichten E J, Hill C T, and Quigg C “Orbitally excited heavy-light mesons revisited,” Prepared for Workshop

on the Future of High Sensitivity Charm Experiments: CHARM2000, FERMILAB-CONF-94-118-T.
[69] Godfrey S “Deconstructing the Charm and Charm-Strange Mesons” talk at GHP 2004, These Proceedings.
[70] van Beveren E and Rupp G Phys. Rev. Lett. 91 012003 (2003) [hep-ph/0305035].
[71] Hwang D S “Mass of D∗

sJ (2317) and Coupled Channel Effect,” talk at GHP 2004, These Proceedings.
[72] Eichten E J “On the narrow resonance in Dsπ

0,” talk at GHP 2004, These Proceedings.
[73] Eichten E J, Hill C T, and Quigg C Phys. Rev. Lett. 71 4116 (1993) [hep-ph/9308337].
[74] Bardeen W A, Eichten E J, and Hill C T Phys. Rev. D68 054024 (2003) [hep-ph/0305049].
[75] Quigg C “The Lost Tribes of Charmonium” hep-ph/0407124.
[76] Eichten E J, Lane K, and Quigg C Phys. Rev. Lett. 89 162002 (2002) [hep-ph/0206018].
[77] Barnes T and Godfrey S Phys. Rev. D69 054008 (2004) [hep-ph/0311162].
[78] Eichten E J, Lane K, and Quigg C Phys. Rev. D69 094019 (2004) [hep-ph/0401210].
[79] Barnes T “Higher Charmonium,” talk at GHP 2004, These Proceedings.
[80] Pakvasa S and Suzuki M Phys. Lett. B579 67 (2004) [hep-ph/0309294].
[81] Dobbs S et al “Search for X(3872) in γγ fusion and ISR at CLEO” hep-ex/0410038.
[82] Zweber P “Search for X(3872),” talk at GHP 2004, These Proceedings.
[83] Bauer G “The X(3872) at CDF II” hep-ex/0409052.
[84] Gomez-Ceballos G “Properties of the X(3872),” talk at GHP 2004, These Proceedings.
[85] Bugg D V Phys. Lett. B598 8 (2004) [hep-ph/0406293].
[86] Bugg D V “The X(3872) and the 3941 MeV peak in ωJ/ψ” hep-ph/0410168.
[87] Voloshin M B “Heavy quark spin selection rule and the properties of the X(3872)” hep-ph/0408321.
[88] Törnqvist N A Phys. Lett. B590 209 (2004) [hep-ph/0402237].
[89] Swanson E S Phys. Lett. B588 189 (2004) [hep-ph/0311229].
[90] Swanson E S “Molecular interpretation of the X(3872)” hep-ph/0410284.
[91] Swanson E “Properties of DD∗ and D∗D∗ Molecules,” talk at GHP 2004, These Proceedings.
[92] Rosner J L “Angular distributions in J/ψ(ρ0, ω) states near threshold” hep-ph/0408334.
[93] Close F E and Godfrey S Phys. Lett. B574 210–216 (2003) [hep-ph/0305285].
[94] Li B A “Is X(3872) a possible candidate of hybrid meson?” hep-ph/0410264.
[95] Petrov A “X(3872) as a hybrid charmonium state,” talk at GHP 2004, These Proceedings.
[96] Liao X and Manke T “Excited charmonium spectrum from anisotropic lattices” hep-lat/0210030.
[97] Aubert B et al Phys. Rev. Lett. 93 041801 (2004) [hep-ex/0402025].
[98] Aubert B et al “Search for an X(3872) charged partner in the decay mode X → J/ψπ−π0 in the B meson

decays B0 → X−K+ B− → X−K0
S” hep-ex/0408083.

[99] Ziegler T “Double Charmonium Production and an X(3940),” talk at GHP 2004, These Proceedings.

http://www.qwg.to.infn.it/WS-oct04/WS3talks/Oct14-2/Eichten_Ds.pdf

